3,208 research outputs found

    Body size but not warning signal luminance influences predation risk in recently metamorphosed poison frogs.

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.During early development, many aposematic species have bright and conspicuous warning appearance, but have yet to acquire chemical defenses, a phenotypic state which presumably makes them vulnerable to predation. Body size and signal luminance in particular are known to be sensitive to variation in early nutrition. However, the relative importance of these traits as determinants of predation risk in juveniles is not known. To address this question, we utilized computer-assisted design (CAD) and information on putative predator visual sensitivities to produce artificial models of postmetamorphic froglets that varied in terms of body size and signal luminance. We then deployed the artificial models in the field and measured rates of attack by birds and unknown predators. Our results indicate that body size was a significant predictor of artificial prey survival. Rates of attack by bird predators were significantly higher on smaller models. However, predation by birds did not differ between artificial models of varying signal luminance. This suggests that at the completion of metamorphosis, smaller froglets may be at a selective disadvantage, potentially because predators can discern they have relatively low levels of chemical defense compared to larger froglets. There is likely to be a premium on efficient foraging, giving rise to rapid growth and the acquisition of toxins from dietary sources in juvenile poison frogs.This study was supported by a PhD scholarship (IFARHU-SENACYT program) and a research grant No. APY-NI-010-006B/ SENACYT both awarded to EEF by the Government of Panama, and by a Royal Society University Research Fellowship to JDB. MS was supported by a Biotechnology and Biological Sciences Research Council David Phillips Research Fellowship (BB/G022887/1). HMR was supported by a Junior Research Fellowship from Churchill College, Cambridge. Special thanks to Rachel Page at STRI for supporting EEF with the grant application, Sistema Nacional de Investigacion de Panama (SNI), and the People of Santa Fe for their collaboration during the stud

    Tissue biomarkers of breast cancer and their association with conventional pathologic features

    Full text link
    Background:Tissue protein expression profiling has the potential to detect new biomarkers to improve breast cancer (BC) diagnosis, staging, and prognostication. This study aimed to identify tissue proteins that differentiate breast cancer tissue from healthy breast tissue using protein chip mass spectrometry and to examine associations with conventional pathological features.Methods:To develop a training model, 82 BC and 82 adjacent unaffected tissue (AT) samples were analysed on cation-exchange protein chips by time-of-flight mass spectrometry. For validation, 89 independent BC and AT sample pairs were analysed.Results:From the protein peaks that were differentially expressed between BC and AT by univariate analysis, binary logistic regression yielded two peaks that together classified BC and AT with a ROC area under the curve of 0.92. Two proteins, ubiquitin and S100P (in a novel truncated form), were identified by liquid chromatography/tandem mass spectrometry and validated by immunoblotting and reactive-surface protein chip immunocapture. The combined marker panel was positively associated with high histologic grade, larger tumour size, lymphovascular invasion, ER and PR positivity, and HER2 overexpression, suggesting that it may be associated with a HER2-enriched molecular subtype of breast cancer.Conclusion:This independently validated protein panel may be valuable in the classification and prognostication of breast cancer patients. © 2013 Cancer Research UK. All rights reserved

    Axonal growth arrests after an increased accumulation of Schwann cells expressing senescence markers and stromal cells in acellular nerve allografts

    Get PDF
    Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β(+)) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin(+)/S100β(−)/CD68(−) cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest (“stressed” ANAs). These stressed ANAs contained mainly S100β(+)/p16(+) cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no deficits in axonal extension. Overall, this evidence demonstrates that long ANAs are repopulated with increased p16(+) Schwann cells and stromal cells compared to short ANAs, suggesting a role for these cells in poor axonal regeneration across nerve constructs

    Theta Vectors and Quantum Theta Functions

    Full text link
    In this paper, we clarify the relation between Manin's quantum theta function and Schwarz's theta vector in comparison with the kq representation, which is equivalent to the classical theta function, and the corresponding coordinate space wavefunction. We first explain the equivalence relation between the classical theta function and the kq representation in which the translation operators of the phase space are commuting. When the translation operators of the phase space are not commuting, then the kq representation is no more meaningful. We explain why Manin's quantum theta function obtained via algebra (quantum tori) valued inner product of the theta vector is a natural choice for quantum version of the classical theta function (kq representation). We then show that this approach holds for a more general theta vector with constant obtained from a holomorphic connection of constant curvature than the simple Gaussian one used in the Manin's construction. We further discuss the properties of the theta vector and of the quantum theta function, both of which have similar symmetry properties under translation.Comment: LaTeX 21 pages, give more explicit explanations for notions given in the tex

    The relationship between white matter microstructure and self-perceived cognitive decline

    Get PDF
    Subjective cognitive decline (SCD) is a perceived cognitive change prior to objective cognitive deficits, and although it is associated with Alzheimer's disease (AD) pathology, it likely results from multiple underlying pathologies. We investigated the association of white matter microstructure to SCD as a sensitive and early marker of cognitive decline and quantified the contribution of white matter microstructure separate from amyloidosis. Vanderbilt Memory & Aging Project participants with diffusion MRI data and a 45-item measure of SCD were included [n = 236, 137 cognitively unimpaired (CU), 99 with mild cognitive impairment (MCI), 73 ± 7 years, 37% female]. A subset of participants (64 CU, 40 MCI) underwent a fasting lumbar puncture for quantification of cerebrospinal fluid (CSF) amyloid-β(CSF Aβ42), total tau (CSF t-tau), and phosphorylated tau (CSF p-tau). Diffusion MRI data was post-processed using the free-water (FW) elimination technique, which allowed quantification of extracellular (FW) and intracellular compartment (fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) microstructure. Microstructural values were quantified within 11 cognitive-related white matter tracts, including medial temporal lobe, frontal transcallosal, and fronto-parietal tracts using a region of interest approach. General linear modeling related each tract to SCD scores adjusting for age, sex, race/ethnicity, education, Framingham Stroke Risk Profile scores, APOE ε4 carrier status, diagnosis, Geriatric Depression Scale scores, hippocampal volume, and total white matter volume. Competitive models were analyzed to determine if white matter microstructural values have a unique role in SCD scores separate from CSF Aβ42. FW-corrected radial diffusivity (RDT) was related to SCD scores in 8 tracts: cingulum bundle, inferior longitudinal fasciculus, as well as inferior frontal gyrus (IFG) pars opercularis, IFG orbitalis, IFG pars triangularis, tapetum, medial frontal gyrus, and middle frontal gyrus transcallosal tracts. While CSF Aβ42 was related to SCD scores in our cohort (Radj2 = 39.03%; β = −0.231; p = 0.020), competitive models revealed that fornix and IFG pars triangularis transcallosal tract RDT contributed unique variance to SCD scores beyond CSF Aβ42 (Radj2 = 44.35% and Radj2 = 43.09%, respectively), with several other tract measures demonstrating nominal significance. All tracts which demonstrated nominal significance (in addition to covariates) were input into a backwards stepwise regression analysis. ILF RDT, fornix RDT, and UF FW were best associated with SCD scores (Radj2 = 46.69%; p = 6.37 × 10-12). Ultimately, we found that medial temporal lobe and frontal transcallosal tract microstructure is an important driver of SCD scores independent of early amyloid deposition. Our results highlight the potential importance of abnormal white matter diffusivity as an early contributor to cognitive decline. These results also highlight the value of incorporating multiple biomarkers to help disentangle the mechanistic heterogeneity of SCD as an early stage of cognitive decline

    Association of Aortic Stiffness With Biomarkers of Neuroinflammation, Synaptic Dysfunction, and Neurodegeneration

    Get PDF
    OBJECTIVES: To test the hypothesis that increased aortic stiffening is associated with greater cerebrospinal fluid (CSF) evidence of core Alzheimer's disease pathology (Aβ, phosphorylated tau (p-tau)), neurodegeneration (total tau (t-tau)), synaptic dysfunction (neurogranin), neuroaxonal injury (neurofilament light (NFL)), and neuroinflammation (YKL-40, sTREM2), we analyzed pulse wave velocity (PWV) data and CSF data among older adults. METHODS: Participants free of stroke and dementia from the Vanderbilt Memory and Aging Project, an observational community-based study, underwent cardiac magnetic resonance to assess aortic pulse wave velocity (PWV, m/sec) and lumbar puncture to obtain CSF. Linear regressions related aortic PWV to CSF Aβ, p-tau, t-tau, neurogranin, NFL, YKL-40, and sTREM2 concentrations adjusting for age, race/ethnicity, education, apolipoprotein (APOE) ε4 status, Framingham Stroke Risk Profile, and cognitive diagnosis. Models were repeated testing PWV interactions with age, diagnosis, APOE-ε4, and hypertension on each biomarker. RESULTS: 146 participants were examined (72±6 years). Aortic PWV interacted with age on p-tau (β=0.31, p=0.04), t-tau, (β=2.67, p=0.05), neurogranin (β=0.94, p=0.04), and sTREM2 (β=20.4, p=0.05). Among participants over age 73 years, higher aortic PWV related to higher p-tau (β=2.4, p=0.03), t-tau (β=19.3, p=0.05), neurogranin (β=8.4, p=0.01), and YKL-40 concentrations (β=7880, p=0.005). Aortic PWV had modest interactions with diagnosis on neurogranin (β=-10.76, p=0.03) and hypertension status on YKL-40 (β=-18020, p<0.001). CONCLUSIONS: Among our oldest participants, age 74 years and older, greater aortic stiffening is associated with in vivo biomarker evidence of neuroinflammation, tau phosphorylation, synaptic dysfunction, and neurodegeneration, but not amyloidosis. Central arterial stiffening may lead to cumulative cerebral microcirculatory damage and blood flow delivery to tissue, resulting in neuroinflammation and neurodegeneration in more advanced age

    Seminar Users in the Arabic Twitter Sphere

    Full text link
    We introduce the notion of "seminar users", who are social media users engaged in propaganda in support of a political entity. We develop a framework that can identify such users with 84.4% precision and 76.1% recall. While our dataset is from the Arab region, omitting language-specific features has only a minor impact on classification performance, and thus, our approach could work for detecting seminar users in other parts of the world and in other languages. We further explored a controversial political topic to observe the prevalence and potential potency of such users. In our case study, we found that 25% of the users engaged in the topic are in fact seminar users and their tweets make nearly a third of the on-topic tweets. Moreover, they are often successful in affecting mainstream discourse with coordinated hashtag campaigns.Comment: to appear in SocInfo 201

    Cerebrospinal fluid and plasma neurofilament light relate to abnormal cognition

    Get PDF
    Introduction Neuroaxonal damage may contribute to cognitive changes preceding clinical dementia. Accessible biomarkers are critical for detecting such damage. Methods Plasma and cerebrospinal fluid (CSF) neurofilament light (NFL) were related to neuropsychological performance among Vanderbilt Memory & Aging Project participants (plasma n = 333, 73 ± 7 years; CSF n = 149, 72 ± 6 years) ranging from normal cognition (NC) to mild cognitive impairment (MCI). Models adjusted for age, sex, race/ethnicity, education, apolipoprotein E ε4 carriership, and Framingham Stroke Risk Profile. Results Plasma NFL was related to all domains (P values ≤ .008) except processing speed (P values ≥ .09). CSF NFL was related to memory and language (P values ≤ .04). Interactions with cognitive diagnosis revealed widespread plasma associations, particularly in MCI participants, which were further supported in head-to-head comparison models. Discussion Plasma and CSF NFL (reflecting neuroaxonal injury) relate to cognition among non-demented older adults albeit with small to medium effects. Plasma NFL shows particular promise as an accessible biomarker with relevance to cognition in MCI
    corecore